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Abstract. The paper describes a method for computing a lower bound of the global minimum of
an indefinite quadratic form over a simplex. The bound is derived by computing an underestimator
of the convex envelope by solving a semidefinite program (SDP). This results in a convex quadratic
program (QP). It is shown that the optimal value of the QP is a lower bound of the optimal value of
the original problem. Since there exist fast (polynomial time) algorithms for solving SDP’s and QP’s
the bound can be computed in reasonable time. Numerical experiments indicate that the relative error
of the bound is about 10 percent for problems up to 20 variables, which is much better than a known
SDP bound.
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1. Introduction

Let f(x) := x” Fx be an indefinite quadratic form, whefee R"+17*D is an in-
definite symmetric matrix. We consider the global quadratic optimization problem
over the standard simplex:

global minimize f(x)

(1)

subject to x €N,
where the admissible set is thedimensional standard simplex
Api={xeR": x>0 1<i<n+1 ¢x=1

ande € R” is the vector of ones. Although the structure of problem (1) is simple,
finding a global solution — and even detecting a local solution — is known to be
NP-hard (see [4], [6]). Problems of the type (1) occur for example in the search
for a maximum (weighted) clique in an undirected graph. Problem (1) is also im-
portant for continuous (nonconvex) optimization because it is strongly related to
the general quadratic optimization problem (QP) which has numerous applications
(see also [1]).

Current solution techniques for QP often employ branch and bound methods.
Most approaches for computing lower bounds of indefinite quadratic forms are
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based on linear programs and the poor quality of these bounds is a major cause of
difficulties (see for example [3] for an overview of solution methods for QP).

In this paper we propose a new lower bound for (1) which is computed by
solving a semidefinite program (SDP) and a QP. Semidefinite programming attracts
currently many researchers since there exist fast (polynomial time) algorithms for
solving SDP’s and because it has been realized that many optimization problems
can be expressed as an SDP (see for example [8, 9, 11]). In Section 2 we describe
a lower bounding technique based on SDP, which has been applied recently to
many hard combinatorial and quadratically constrained quadratic programs (which
include (1)).

In Section 3 we present a new lower bound for (1). Our approach is based
on approximating the convex envelope by solving an SDP and then solving the
resulting QP to obtain a lower bound. Numerical results on random test problems,
which we present in Section 4, indicate that the new bound is much better than the
known SDP bound described in Section 2. The paper ends with some conclusions.

2. A known SDP bound

Shor and others proposed a lower bound for quadratically constrained quadratic
programs (QQP) which is based on semidefinite programming. Consider the fol-

lowing QQP:
min Jo(x)
. _ 2)
subjectto fi(x) <0, i=1,...,L,

where f;(x) = xT Ajx + 2bT x +¢;,i = 1,..., L. Itis shown (see [10] and [11])
that a lower bound for (2) is given by the following SDP:

min tr XAo + 2b{x + co
subjectto trXA; +2b/x +¢; <0, i=1,...,L, (3)
X x
|:xT 1:| =0,

where the variables a® = X7 € R®™ andx € R". The notationA > 0 means
that the matrixA is positive semidefinite and # denotes the trace of a matrik
Note that the only difference between (2) and (3) is the replacemexit-efxx’
with X > xxT.

Multiplying the constraintsy; > 0 and x > 0 and squaring the constraint
e’x = 1in (1) yields the following QQP which is equivalent to (1):

min trFX
subjectto x;x; >0, 1<i, j<n+1 (4)

€"x)?=1 X=xx'.
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Relaxing this problem as in (3) leads to the following lower bound for (1):

boig:=min trFX
subjectto X >0, trJX=1, (5)
X >0,

whereJ is the matrix of ones.

3. A new lower bound

In this section we derive a new lower bound for (1). We begin with the following
fundamental result:

LEMMA 1. LetF, W e RO*1n+D pe symmetric matrices anl@ < F (compo-
nentwise). Then

global minx” Wx < global minx” Fx.

xXeEA, xXeEA,

Proof. We have
xTFx —xTWx =xT(F-W)x >0 forx e A,

sincex > 0onA, andF — W > 0. This implies the assertion. O

In [7] we used Bézier methods to compute lower bounds of multivariate poly-
nomials overA,,. Here, we propose an improved lower bounding technique. The
idea is to construct a convex quadratic functiotx) := x” Wx such thatW < F
andw(x) approximatesf (x) in a special sense. From Lemma 1 it follows that the
minimum of w(x) over A, is a lower bound for problem (1). The condition that a
guadratic form is a convex ovey, can be formulated as a matrix inequality:

LEMMA 2. Let® : R+ — R®M pe the linear map defined By(G);; :=
Gij + Gn—i—l,n—i—l - Gn+l,i - Gn-i—l,j (1 < i’j < I’l), whereG € R(n+l,n+l) is a
symmetric matrix. A quadratic fora¥ Gx is convex om\,, if and only if®(G) > 0.
Proof. The matrix® (G) is the Hessian of the quadratic form G x with respect
to the coordinates; —e, 1 (1 < i < n),1.6.®;(G) = 0¢;—¢, 1 0¢;—e,s (x7 Gx), 1 <
i, j <n. |

Consider now the following optimization problem:

W :=argmin trJ(F — G)
subjectto G < F, (6)
diagG = diagF, ®(G) >0,
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where® is defined as in Lemma 2. The new lower bound is defined by

bnew:: mln )CTW)C. (7)

xXeEA,

Before we prove some properties of the boung, we introduce the following
notation. LetA € R”*+1"+D pe a given matrix and denote by e R"+17+D and
by A¢ € R*+1+D the matrices defined by
L. 1 c . 1 P
Ajj = E(Aii +Aji) A = E(Aii —2A;;+Aj), 1<i,j<n+1l
(8)

We have obviouslyd = A’ — A°. The quadratic form” A’x is linear overA, and
the entries of the matrix 2A¢ are the second-order derivatives of the quadratic
form x” Ax along the edges of,, i.e. ai_ejx’Ax =2-A;(1<i,j<n+1).

PROPOSITION 1.
() Problem (6) is well defined.
(i) bnewis alower bound of the global minimum of (1).

(iii) If f(x) is concave on the edges of the simplgxthenW = F! andbpey
is exact.

(iv) Let
E“:={ij:Fl.°]‘.>O, 1<i<j<n+1} (9)
be the edge set of edgesmf where f (x) is strictly convex. Problem

W =argmin trJ(F — G)
subjectto G;; < F;;, ij € E-, (20)
diagG = diagF, ®(G)>=0
is equivalent to (6).
Proof.

(i) Let gmin == min{—F; : 1 <i,j < n+ 1} and letW e R@+17+D pe the
matrix defined by

Since FS = 0 it follows gmin < O and thereford¥ < F. Note that®(W) =
—gmin(I + J) wherel isthe(n + 1) x (n + 1) identity matrix. Hence convexity
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of the quadratic formx” Wx over A, follows immediately via Lemma 2 an&
satisfies the constraints of problem (6). Therefore, problem (6) is well defined.

(i) Since W < F it follows from Lemma 1 thab,.,, is a lower bound of the
optimal value of problem (1).

(iii) Let G € R™+17+D be a matrix which is in the feasible set of problem (6).
Since diagF = diagG we haveF’ = G' and hencd” — G = G¢ — F¢ implying
trJ(F—G)=trJ(G° — F) = —trJF° + Zl@jgnﬂ IG5 1. The last equality
follows from ® (G) > 0, which impIiesG;‘j >0(1<i,j<n+1.Sincef(x)is
concave on the edges of, we haveF; < 0 (1 <i, j < n + 1) which makes the
inequalityG < F superfluous. Therefore, problem (6) is equivalent to

W =F —W¢ W¢=argmin Z G|
1<i, j<n+1
subjectto ®(F' — G) = 0,

which has the unique solutioW¢ = 0. This implies that¥ = F! is the solution
of (6) and the objective function in (7) is linear. Hence a solution of (7) is attained
at a vertex ofA,,, which proves thab,.,, is exact.

(iv) The number of inequalities in (6) can be reduced due to the following ob-
servation. Lefg(x) := x” Gx be a convex quadratic form o, where diagG =
diag F. SinceF; < Oforallij ¢ E¢andd;_, g(x) = 2G; > 0for1<i < j <
n + 1 it follows

Fij—Gij=Gj;, — F; >0 forallij ¢ E

which proves the statement. O

Note that the number of variables in the semidefinite program (10) can be re-
duced by eliminating the constraints dia@g= diagF. Define the linear map
VRO (U e ROHLHD - diagU = 0} by

1 .
WV (X)ins1 =Y X)py1,i = _Exiiv 1<i<n
1
W(X); = Xij — E(X“ +X;), 1<i,j<n
\D(X)n+1,n+1 = Oa
whereX € R™"_ We haved (¥ (X)+ F') = X and diag(¥ (X)+ F') = diagF.

SubstitutingG by ¥ (X) + F' in problem (10) we obtain the following equivalent
semidefinite program with the variable e R"":
W = W(X*) + F, X* = argmin trJ (—F¢ — W (X))
subjectto W (X);; < —E‘]i, ij e EC,
X > 0. (11)



362 I. NOWAK

4. Numerical results

We made numerical experiments on random test examples to compare the bounds
boig and bney. In order for the reader to be able to reproduce these examples we
include the source code, written in C++, that we used for generating random test
examples of the type (1). We used the following procedures to compute the entries
of the matrixF':

void rand_gps(int n,double dens,double dvert,int &seed,rmatrix &Fc,
rmatrix &F1l,rmatrix &F)
{
int 1,3,1;
double r=(4.*double(seed)+1.)/16384./16384.;
Fc=0.0; seed++;
for (1=0;1i<n;i++)
for(j=i+l;j<=n;j++)
if (random(r,0,1)<dens)
Fc(i,3j)=Fc(3j,1)=random(r,0.,10.);
else
Fc(i,j)=Fc(j,1)=random(r,-10.,0.);
for(i=0;i<=n;i++) F1l(i,i)=random(r,0,dvert);
for(i=0;i<n;1i++)
for(j=i+l;j<=n;j++) F1(i,3j)=F1(j,1)=0.5*(F1(1i,1)+F1(3,3));
for (i=0;1<=n;i++)
for(j=i;j<=n;j++) F(i,3)=F(3,1)=F1(i,])-Fc(i,]);
}

double random(double &r,double a,double b)
{

r=fmod (r*41475557.,1.);

return(r* (b-a)+a);

}

The parameteteed is initialized by one. The SDP’s (5) and (11) were solved using
the implementation of Borchers [2] of the interior point algorithm of [5]. The QP
(7) was solved by a descent method. In order to compare the bounds we computed
a local minimum off (x) over A,,, which we denote by, by a descent method
starting from the point

x©@ = arg minx” Wx,
xXeA,
whereW is the solution of the SDP (10). The table below displays the numerical
results. We made always 50 runs and averaged the quantities. The parameters
dens.dyert denote the problem size, the density of the edgeE$etnd the random
deviation of f(x) at the vertices from zero (see source code). The percentage
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Table 1.
n dens dvert enew éold Opthew OPloid  timenew timegig
5 025 0 0.630642 127.301 86 0 0.0176  0.0282
5 025 2 2.20818 117.593 80 2 0.0174 0.029
5 05 0 5.98523 185.513 80 0 0.0224 0.0288
5 05 2 1.17532 159.883 76 0 0.0208 0.0286
5 075 O 1.66293 260.102 58 0 0.0264 0.0288
5 075 2 1.3963 233.698 62 0 0.0268 0.0278
10 025 O 15.7269 188.606 14 0 0.1212 0.2098
10 025 2 7.30263 163.564 28 0 0.1192 0.2106
10 05 0 7.70254 279.534 10 0 0.1636 0.2202
10 0.5 2 7.74051 253.067 12 0 0.1654 0.2202
10 0.75 O 3.4551 458.674 16 0 0.217 0.2174
10 0.75 2 3.65035 404.81 20 0 0.2184 0.223
20 025 O 16.5635 269.016 4 0 1.1584 3.1828
20 025 2 17.3237 239.572 2 0 1.151 3.101
20 05 0 8.85466 450.526 0 0 1.8094  3.3268
20 0.5 2 9.21408 393.978 0 0 1.8108 3.2972
20 075 O 5.59175 833.251 0 0 2.712 2.9648
20 0.75 2 8.08468 693.587 0 0 2.7348 3.22

relative error of the boundney and bog is denoted byenew := 100 - %St’e“

andegqy := 100 ”f"df%sfes‘ respectively. The percentage averaged number of cases
where the absolute error b, andbgq does not exceed 16is denoted byptew
andoptqyg, respectively. The CPU time in seconds for computing the bobpgs

and bgg is denoted by timg,, and timgyy respectively. The computations were
performed on a HP J 280 workstation.

The table shows that the relative errorigt,, is between 0.6 and 18 percent
which is much better than the relative errorigfy (by a factor between 10 and
200). The bound,e, is even sometimes exact for small size instances. In general,
problems are bounded more accurately where the density of the ed@g set
small. It seems that the parametkg does not influence the results very much.
The CPU time for computingney is slightly smaller than for computingg.

5. Conclusion

We presented a new technique for bounding indefinite quadratic forms over a sim-
plex. Numerical experiments on random test examples show that the bgund
is quite sharp and improves the known SDP boépg The computational cost
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for bpew is Not much higher than fobgg since it is only necessary to solve an
additional convex quadratic program, which can be done in polynomial time. A
branch and bound algorithm for solving (1) using this new bounding technique is
in preparation.
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