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Abstract. The paper describes a method for computing a lower bound of the global minimum of
an indefinite quadratic form over a simplex. The bound is derived by computing an underestimator
of the convex envelope by solving a semidefinite program (SDP). This results in a convex quadratic
program (QP). It is shown that the optimal value of the QP is a lower bound of the optimal value of
the original problem. Since there exist fast (polynomial time) algorithms for solving SDP’s and QP’s
the bound can be computed in reasonable time. Numerical experiments indicate that the relative error
of the bound is about 10 percent for problems up to 20 variables, which is much better than a known
SDP bound.
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1. Introduction

Let f (x) := xT Fx be an indefinite quadratic form, whereF ∈ R(n+1,n+1) is an in-
definite symmetric matrix. We consider the global quadratic optimization problem
over the standard simplex:

global minimize f (x)
(1)

subject to x ∈ 1n,

where the admissible set is then-dimensional standard simplex

1n := {x ∈ Rn+1 : xi > 0, 16 i 6 n+ 1, eT x = 1}
ande ∈ Rn is the vector of ones. Although the structure of problem (1) is simple,
finding a global solution – and even detecting a local solution – is known to be
NP-hard (see [4], [6]). Problems of the type (1) occur for example in the search
for a maximum (weighted) clique in an undirected graph. Problem (1) is also im-
portant for continuous (nonconvex) optimization because it is strongly related to
the general quadratic optimization problem (QP) which has numerous applications
(see also [1]).

Current solution techniques for QP often employ branch and bound methods.
Most approaches for computing lower bounds of indefinite quadratic forms are
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based on linear programs and the poor quality of these bounds is a major cause of
difficulties (see for example [3] for an overview of solution methods for QP).

In this paper we propose a new lower bound for (1) which is computed by
solving a semidefinite program (SDP) and a QP. Semidefinite programming attracts
currently many researchers since there exist fast (polynomial time) algorithms for
solving SDP’s and because it has been realized that many optimization problems
can be expressed as an SDP (see for example [8, 9, 11]). In Section 2 we describe
a lower bounding technique based on SDP, which has been applied recently to
many hard combinatorial and quadratically constrained quadratic programs (which
include (1)).

In Section 3 we present a new lower bound for (1). Our approach is based
on approximating the convex envelope by solving an SDP and then solving the
resulting QP to obtain a lower bound. Numerical results on random test problems,
which we present in Section 4, indicate that the new bound is much better than the
known SDP bound described in Section 2. The paper ends with some conclusions.

2. A known SDP bound

Shor and others proposed a lower bound for quadratically constrained quadratic
programs (QQP) which is based on semidefinite programming. Consider the fol-
lowing QQP:

min f0(x)
(2)

subject to fi(x) 6 0, i = 1, . . . , L,

wherefi(x) = xT Aix + 2bTi x + ci, i = 1, . . . , L. It is shown (see [10] and [11])
that a lower bound for (2) is given by the following SDP:

min trXA0 + 2bT0 x + c0

subject to trXAi + 2bTi x + ci 6 0, i = 1, . . . , L, (3)[
X x

xT 1

]
� 0,

where the variables areX = XT ∈ R(n,n) andx ∈ Rn. The notationA � 0 means
that the matrixA is positive semidefinite and trA denotes the trace of a matrixA.
Note that the only difference between (2) and (3) is the replacement ofX = xxT
with X � xxT .

Multiplying the constraintsxi > 0 and xj > 0 and squaring the constraint
eT x = 1 in (1) yields the following QQP which is equivalent to (1):

min tr FX

subject to xixj > 0, 16 i, j 6 n+ 1, (4)

(eT x)2 = 1, X = xxT .
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Relaxing this problem as in (3) leads to the following lower bound for (1):

bold := min tr FX

subject to X > 0, tr JX = 1, (5)

X � 0,

whereJ is the matrix of ones.

3. A new lower bound

In this section we derive a new lower bound for (1). We begin with the following
fundamental result:

LEMMA 1. LetF,W ∈ R(n+1,n+1) be symmetric matrices andW 6 F (compo-
nentwise). Then

global min
x∈1n

xTWx 6 global min
x∈1n

xT Fx.

Proof.We have

xT Fx − xTWx = xT (F −W)x > 0 for x ∈ 1n

sincex > 0 on1n andF −W > 0. This implies the assertion. 2
In [7] we used Bézier methods to compute lower bounds of multivariate poly-

nomials over1n. Here, we propose an improved lower bounding technique. The
idea is to construct a convex quadratic functionw(x) := xTWx such thatW 6 F
andw(x) approximatesf (x) in a special sense. From Lemma 1 it follows that the
minimum ofw(x) over1n is a lower bound for problem (1). The condition that a
quadratic form is a convex over1n can be formulated as a matrix inequality:

LEMMA 2. Let8 : R(n+1,n+1) → R(n,n) be the linear map defined by8(G)ij :=
Gij + Gn+1,n+1 − Gn+1,i − Gn+1,j (1 6 i, j 6 n), whereG ∈ R(n+1,n+1) is a
symmetric matrix. A quadratic formxTGx is convex on1n if and only if8(G) � 0.

Proof.The matrix8(G) is the Hessian of the quadratic formxTGx with respect
to the coordinatesei−en+1 (16 i 6 n), i.e.8ij (G) = ∂ei−en+1∂ej−en+1(x

T Gx),1 6
i, j 6 n. 2
Consider now the following optimization problem:

W :=argmin trJ (F −G)
subject to G 6 F, (6)

diagG = diagF, 8(G) � 0,
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where8 is defined as in Lemma 2. The new lower bound is defined by

bnew := min
x∈1n

xTWx. (7)

Before we prove some properties of the boundbnew we introduce the following
notation. LetA ∈ R(n+1,n+1) be a given matrix and denote byAl ∈ R(n+1,n+1) and
byAc ∈ R(n+1,n+1) the matrices defined by

Alij :=
1

2
(Aii + Ajj ), Acij :=

1

2
(Aii − 2Aij + Ajj ), 16 i, j 6 n+ 1.

(8)

We have obviouslyA = Al −Ac. The quadratic formxT Alx is linear over1n and
the entries of the matrix 2· Ac are the second-order derivatives of the quadratic
form xT Ax along the edges of1n, i.e.∂2

ei−ej x
tAx = 2 · Acij (16 i, j 6 n+ 1).

PROPOSITION 1.

(i) Problem (6) is well defined.

(ii) bnew is a lower bound of the global minimum of (1).

(iii) If f (x) is concave on the edges of the simplex1n thenW = F l andbnew

is exact.

(iv) Let

Ec := {ij : Fcij > 0, 16 i < j 6 n+ 1} (9)

be the edge set of edges of1n wheref (x) is strictly convex. Problem

W =argmin trJ (F −G)
subject to Gij 6 Fij , ij ∈ Ec, (10)

diagG = diagF, 8(G) � 0

is equivalent to (6).
Proof.
(i) Let qmin := min{−Fcij : 1 6 i, j 6 n + 1} and letŴ ∈ R(n+1,n+1) be the

matrix defined by

Ŵij := F lij +
{
qmin if i 6= j

0 else
, 16 i, j 6 n+ 1.

SinceFcii = 0 it follows qmin 6 0 and thereforeŴ 6 F . Note that8(Ŵ) =
−qmin(I + J ) whereI is the(n + 1) × (n + 1) identity matrix. Hence convexity
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of the quadratic formxT Ŵx over1n follows immediately via Lemma 2 and̂W
satisfies the constraints of problem (6). Therefore, problem (6) is well defined.

(ii) SinceW 6 F it follows from Lemma 1 thatbnew is a lower bound of the
optimal value of problem (1).

(iii) Let G ∈ R(n+1,n+1) be a matrix which is in the feasible set of problem (6).
Since diagF = diagG we haveF l = Gl and henceF −G = Gc −Fc implying
tr J (F − G) = tr J (Gc − Fc) = −tr JF c +∑16i,j6n+1 |Gc

ij |. The last equality
follows from8(G) � 0, which impliesGc

ij > 0 (16 i, j 6 n+ 1). Sincef (x) is
concave on the edges of1n we haveFcij 6 0 (1 6 i, j 6 n + 1) which makes the
inequalityG 6 F superfluous. Therefore, problem (6) is equivalent to

W = F l −Wc, Wc = argmin
∑

16i,j6n+1

|Gc
ij |

subject to 8(F l −Gc) � 0,

which has the unique solutionWc = 0. This implies thatW = F l is the solution
of (6) and the objective function in (7) is linear. Hence a solution of (7) is attained
at a vertex of1n, which proves thatbnew is exact.

(iv) The number of inequalities in (6) can be reduced due to the following ob-
servation. Letg(x) := xTGx be a convex quadratic form on1n where diagG =
diagF . SinceFcij 6 0 for all ij 6∈ Ec and∂2

ei−ej g(x) = 2Gc
ij > 0 for 16 i < j 6

n+ 1 it follows

Fij −Gij = Gc
ij − Fcij > 0 for all ij 6∈ Ec

which proves the statement. 2
Note that the number of variables in the semidefinite program (10) can be re-

duced by eliminating the constraints diagG = diagF . Define the linear map
9 : R(n,n)→ {U ∈ R(n+1,n+1) : diagU = 0} by

9(X)i,n+1 = 9(X)n+1,i = −1

2
Xii, 16 i 6 n

9(X)ij = Xij − 1

2
(Xii +Xjj ), 16 i, j 6 n

9(X)n+1,n+1 = 0,

whereX ∈ R(n,n). We have8(9(X)+F l) = X and diag(9(X)+F l) = diagF .
SubstitutingG by9(X)+ F l in problem (10) we obtain the following equivalent
semidefinite program with the variableX ∈ R(n,n):

W = 9(X∗)+ F l, X∗ = argmin trJ (−Fc −9(X))
subject to 9(X)ij 6 −Fcij , ij ∈ Ec,

X � 0. (11)
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4. Numerical results

We made numerical experiments on random test examples to compare the bounds
bold andbnew. In order for the reader to be able to reproduce these examples we
include the source code, written in C++, that we used for generating random test
examples of the type (1). We used the following procedures to compute the entries
of the matrixF :

void rand_qps(int n,double dens,double dvert,int &seed,rmatrix &Fc,
rmatrix &Fl,rmatrix &F)

{
int i,j,l;
double r=(4.*double(seed)+1.)/16384./16384.;
Fc=0.0; seed++;
for(i=0;i<n;i++)

for(j=i+1;j<=n;j++)
if(random(r,0,1)<dens)

Fc(i,j)=Fc(j,i)=random(r,0.,10.);
else

Fc(i,j)=Fc(j,i)=random(r,-10.,0.);
for(i=0;i<=n;i++) Fl(i,i)=random(r,0,dvert);
for(i=0;i<n;i++)

for(j=i+1;j<=n;j++) Fl(i,j)=Fl(j,i)=0.5*(Fl(i,i)+Fl(j,j));
for(i=0;i<=n;i++)

for(j=i;j<=n;j++) F(i,j)=F(j,i)=Fl(i,j)-Fc(i,j);
}

double random(double &r,double a,double b)
{

r=fmod(r*41475557.,1.);
return(r*(b-a)+a);

}

The parameterseed is initialized by one. The SDP’s (5) and (11) were solved using
the implementation of Borchers [2] of the interior point algorithm of [5]. The QP
(7) was solved by a descent method. In order to compare the bounds we computed
a local minimum off (x) over1n, which we denote byfest, by a descent method
starting from the point

x(0) := arg min
x∈1n

xTWx,

whereW is the solution of the SDP (10). The table below displays the numerical
results. We made always 50 runs and averaged the quantities. The parametersn,
dens,dvert denote the problem size, the density of the edge setEc and the random
deviation off (x) at the vertices from zero (see source code). The percentage
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Table 1.

n dens dvert enew eold optnew optold timenew timeold

5 0.25 0 0.630642 127.301 86 0 0.0176 0.0282

5 0.25 2 2.20818 117.593 80 2 0.0174 0.029

5 0.5 0 5.98523 185.513 80 0 0.0224 0.0288

5 0.5 2 1.17532 159.883 76 0 0.0208 0.0286

5 0.75 0 1.66293 260.102 58 0 0.0264 0.0288

5 0.75 2 1.3963 233.698 62 0 0.0268 0.0278

10 0.25 0 15.7269 188.606 14 0 0.1212 0.2098

10 0.25 2 7.30263 163.564 28 0 0.1192 0.2106

10 0.5 0 7.70254 279.534 10 0 0.1636 0.2202

10 0.5 2 7.74051 253.067 12 0 0.1654 0.2202

10 0.75 0 3.4551 458.674 16 0 0.217 0.2174

10 0.75 2 3.65035 404.81 20 0 0.2184 0.223

20 0.25 0 16.5635 269.016 4 0 1.1584 3.1828

20 0.25 2 17.3237 239.572 2 0 1.151 3.101

20 0.5 0 8.85466 450.526 0 0 1.8094 3.3268

20 0.5 2 9.21408 393.978 0 0 1.8108 3.2972

20 0.75 0 5.59175 833.251 0 0 2.712 2.9648

20 0.75 2 8.08468 693.587 0 0 2.7348 3.22

relative error of the boundbnew and bold is denoted byenew := 100 · bnew−fest
fest

andeold := 100 · bold−fest
fest

respectively. The percentage averaged number of cases

where the absolute error ofbnew andbold does not exceed 10−4 is denoted byoptnew

andoptold, respectively. The CPU time in seconds for computing the boundsbnew

and bold is denoted by timenew and timeold respectively. The computations were
performed on a HP J 280 workstation.

The table shows that the relative error ofbnew is between 0.6 and 18 percent
which is much better than the relative error ofbold (by a factor between 10 and
200). The boundbnew is even sometimes exact for small size instances. In general,
problems are bounded more accurately where the density of the edge setEc is
small. It seems that the parameterdvert does not influence the results very much.
The CPU time for computingbnew is slightly smaller than for computingbold.

5. Conclusion

We presented a new technique for bounding indefinite quadratic forms over a sim-
plex. Numerical experiments on random test examples show that the boundbnew

is quite sharp and improves the known SDP boundbold. The computational cost
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for bnew is not much higher than forbold since it is only necessary to solve an
additional convex quadratic program, which can be done in polynomial time. A
branch and bound algorithm for solving (1) using this new bounding technique is
in preparation.
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